

 The Re:Search Engine –
Helping People Return to Information on the Web

Jaime Teevan
Massachusetts Institute of Technology, CSAIL

Cambridge, MA 02139 USA
teevan@csail.mit.edu

ABSTRACT
Re-finding information is commonly cited as a problem on
the Web. One reason re-finding is hard is that while people
rely on context to return to information (e.g., by following
the original path taken to it), the Web makes no guarantee
that the context will remain static. The Re:Search Engine is
designed to help people return to information in dynamic
environments like the Web by maintaining consistency in
the results it returns. For example, if Connie, while looking
to purchase a Global Positioning System, found several she
liked via a search for “GPS”, she would expect to be able to
use the same query to locate the same systems again. Re-
turning the original result list for a re-issued query provides
consistency, but omits new information, such as new GPS
systems. An ideal result list contains both the systems Con-
nie remembers having seen and high quality new systems.
Because people remember little of what is presented in a
search result list, when a person repeats a query, the
Re:Search Engine can preserve what is remembered about
the original result list while presenting new information.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces – Graphical user interfaces.
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval – Search process, Relevance feedback.

General terms: Design, Experimentation, Human Factors

Keywords: Re-finding, personalization, information man-
agement, implicit feedback, user profiling.

PEOPLE RELY ON CONSISTENCY TO RE-FIND…
Supporting the successful re-finding of information on the
Web is important. In a study of Web users [3], 17% of
those surveyed reported “Not being able to return to a page
I once visited,” as one of “ the biggest problems in using the
Web.” People rely on consistency in their information en-
vironment to re-find [2]. Consider the example search
shown in Figure 1. If Connie, while looking to purchase a
Global Positioning System, found several systems she liked
through a search for “GPS”, she would expect to be able to
use the same query to locate the exact same systems again.

The importance of consistency is emphasized by two stud-
ies conducted to give insight into how people return to in-
formation. One, a modified diary study of fifteen computer
science graduate students performing personally motivated
searches in their email, in their files, and on the Web, found

that even among this technically savvy population, partici-
pants preferred navigating to their search target along
known paths over jumping directly to it [10]. This pre-
ferred search strategy is fragile, failing if any part along the
known path changes. A naturalistic study analyzing in-
stances mined from the Web where people expressed diffi-
culty re-finding found that lost information was commonly
described using the path originally taken to find it [12].

…BUT THE WEB CHANGES
Despite the importance of consistency in re-finding, infor-
mation on the Web frequently changes. For example,
search results, often an important step in the original access
path to a piece of information, change when search engines
update their indices to reflect the current state of the Web
or users misremember past queries. Attempts to improve
retrieval quality through personalization or collaborative
filtering will further increase the frequency of such changes.

Although Web search engines have traditionally sought to
return the search results that are the most relevant to a
query without consideration of past user context, some re-
cent search systems, such as A9 [1], allow users to mark
pages of interest to return to later. However, people are
unlikely to employ keeping strategies that require active
involvement [6]. Some search engines also allow people to
explicitly search within information they have seen before
[1, 4], but these systems do not maintain consistency in
result presentation, requiring the user to take a different

Figure 1. Connie’s initial results for the query “GPS”

Copyright is held by the author/owner.
UIST ’05, October 23-27, 2005, Seattle, Washington, USA.
ACM 1-59593-023-X/05/0010...$5.00.

path to the same information. Information management
systems that preserve consistency in dynamic environments
permit their users choose to interact with a cached version
of their information space [5, 9]. While employing similar
methods to keep the results for repeat queries static would
make re-finding simpler, it would deny users the opportu-
nity to discover new information. For example, if Connie
re-issues her “GPS” search, in addition to re-finding the
systems she liked before, it is possible she would also be
interested in learning about newly available systems. Even
though changes to search results associated with a query
can potentially hinder returning to previously viewed in-
formation, they benefit users by providing new information.

SOLUTION – THE RE:SEARCH ENGINE
The Re:Search Engine addresses the dual goals of main-
taining search result consistency and providing new infor-
mation by seamlessly integrating old relevant information
with new. The engine interfaces with a preexisting search
engine (e.g., Google or Yahoo!). When a person issues a
query that has been issued before, the Re:Search Engine
first fetches the current results for that query from the un-
derlying search engine. It then merges this newly available
information with a cached copy of the results that were pre-
viously presented to the user, leaving unchanged what the
user remembers about the initial result set. Because people
tend to remember very little about the search result list they
originally saw, it is possible to preserve the salient features
of the old results while still presenting new information.

Consider as an example Connie’s search. Recall that Figure
1 shows the results when Connie first searched for “GPS”.
Later, when she re-performed the same query, the results
had changed to include several new GPS systems (Figure

2a). Instead of directly returning the new results, which
could be disorienting, or the original results, which might
omit items Connie would want to see, the Re:Search Engine
merged the two (Figure 2b). The merging preserves memo-
rable aspects of the original results, such as followed links
(italicized) and the ordering of the first and last results,
while including new results and an updated result summary.

An exploratory paper prototype study of people interacting
with lists of document summaries suggests that many
changes, such as changes to the summary wording and to
the document ordering, go unnoticed, even when the
changes occur as the person interacts with the information
[11]. A challenge in designing a system that takes advan-
tage of the fact that people don’ t notice all changes is to
identify which aspects of the information a person interacts
with are memorable (and thus should only be changed with
care), and which are not (and can change as needed).

THE RE:SEARCH ENGINE ARCHITECTURE
The architecture of the Re:Search Engine is shown in Fig-
ure 3. The design of the system is influenced by a study of
what 119 people found memorable about search result lists.
In the study, participants were initially asked to interact
with a search result list and then later asked to recall their
query and the results they interacted with without referring
back to the original information.

When a person performs a search via the Re:Search Engine,
the query is passed through an index of past queries that
returns similar previously issued queries. These matching
queries are used to retrieve the associated previously
viewed search results from a result cache. Using informa-
tion stored in the user interaction cache, the past results are
then merged with the live results for the current query and

 (a) Current Web results (b) Results show to user by Re:Search Engine

Figure 2. An example of the Re:Search Engine in action. Figure 1 shows the search results when Connie first searched for
“GPS” (visited links are italicized). Figure 2(a) shows the results when the query is next performed, and Figure 2(b) shows how
the Re:Search Engine combines what Connie is likely to remember from Figure 1 with what is new in Figure 2(a).

the merged list is returned to the user. Finally, the current
query is added to the index of past queries, the merged re-
sult list is added to the result cache, and the user interac-
tions with the returned result list are logged.

Index of Past Queries
The purpose of the index of past queries is to identify re-
peat searches. The index functions similarly to a traditional
document index, except that the “documents” indexed are
query strings. An index was chosen for the query matching
both for efficiency and because it accurately reflects how
people remember their past queries. For example, word
ordering, tense, capitalization and stop words are com-
monly forgotten when recalling search terms, and these
features are removed when a query is indexed.

Not all queries that contain similar text to a past query are
repeat searches. During search sessions, people commonly
explore variants of the same query, actively seeking new
results with each variant. For example, if Connie thought
the results returned for “GPS” contained too many expen-
sive systems, she might try searching for “GPS, cheap” .
These results should not be merged with the results for the
query she issued immediately prior. For this reason, past
queries that are similar but occurred recently are ignored.

Result Cache
If the query the user issued is determined to be related to
one or more previous searches run by the user, the results
corresponding to the previous searches are fetched from a
result cache using the pervious queries returned by the past
query index as keys. Only the most recently viewed set of
results for a particular query is stored in the cache. For
example, when Connie issued the query “GPS” a second
time, the results shown in Figure 2(b) replaced the results
shown in Figure 1 in her result cache.

User Interaction Cache
Past results of possible relevance to the current query are
fetched and merged with the live search results to produce a

list containing both old and new results. The merge algo-
rithm is designed to help people take advantage of the con-
text built during past searches, and thus draws on an under-
standing of how memorable past results are. Implicit meas-
ures of attention, like those discussed by Kelly and Teevan
[7], can suggest what one might notice during a search.
These measures are collected by instrumenting the user’s
browser to observe the user’s interactions with previous
result sets and are stored in a user interaction cache. The
implicit measures currently recorded by the Re:Search En-
gine are click through and click ordering.

Merge Algorithm
In the merging of old and new result lists, each old result is
given a memorability score. This score was developed by
analyzing what people remember about search result lists,
and is computed using past user interactions with the result
(e.g., whether the associated Web page was visited), static
information about the result (e.g., its rank in the result list),
and the result’s associated query (e.g., the query’s relevance
to the current query and its recency). For example, the Ma-
gellan SportTrak system that Connie found during her GPS
search originally ranked third. The result’s memorability is
the observed probability of the third result being remem-
bered given it was clicked. This value is increased slightly
because the SportTrak system is last result she clicked, and
discounted by the elapsed time since the original query.

Changing the presentation of a memorable result incurs a
cognitive cost, represented as a cost of change, because the
result no longer occurs where expected. Changing a re-
sult’s rank incurs a small cost, while removing a result from
the list incurs a large cost. Like the memorability score, the
cost of change is based on actual user behavior. For exam-
ple, the recalled rank of a result tends to be higher than the
result’s true rank, so the cost of change for the SportTrak
system to be listed second is relatively small compared with
the cost of its being ranked last. Because a change to a
memorable result incurs a greater cognitive cost than a

Figure 3. The architecture of the Re:Search Engine. The user’s current query is matched to past queries, and the results for the
past queries are retrieved from a cache. These results are then merged with the live search engine results based on how memo-
rable the results are, and the resulting result list is presented to the user.

change to a result that is hardly remembered, the cost of a
result list is a function of result memorability and the cost
of making the changes necessary to produce that list.

Additionally, each result in the new result list for the cur-
rent query is given a benefit of new information score based
on the expected benefit the as-yet-unseen result will provide
to the user. If scoring information is available from the
underlying search engine, the result’s score can be used to
represent the expected benefit. However, scoring informa-
tion is often not available, so the Re:Search Engine uses the
result’s rank as a proxy. Beneficial results are more likely
to be seen if they occur high in the returned result list, and
the benefit of a result list is based both on each individual
result’s benefit and its location in the list.

During the merge process, all permutations of possible final
result lists that include at least three old results and three
new results are considered. Requiring old and new results
ensures that some context is maintained while not allowing
the result list to stagnate. The result list with the highest
total benefit minus cost is selected and returned to the user.
Although considering all permutations naively is expensive,
the merge algorithm can be implemented efficiently by rep-
resenting the problem as a min-cost network flow problem.

EVALUATION PLAN
An underlying principle of the Re:Search Engine is that
search results should not merely contain the information
most relevant to a searcher’s immediate need. Instead, re-
sults should account for previous interactions with related
information and make it easy to take advantage of past con-
text. Since testing such a principle requires direct user in-
volvement in the evaluation, the Re:Search Engine will be
evaluated through a series of user studies.

Several studies in the process of being conducted involve
the performance of two searches – an initial search and a re-
search for information encountered during the initial search.
Such two-search studies allow for the conduct of controlled
experiments and permit the exploration of a number of re-
sult orderings in addition to the Re:Search Engine’s order-
ing, including a static ordering, a dynamic ordering, and
one where the most memorable results are presented first.

An initial two-search study of 113 people suggests that
when a result list changes naively, people often notice the
change (between 54% and 73% of the time). In contrast,
changes made by the Re:Search Engine are noticed only as
often as they are in the baseline static case. A further study
is being conducted to look at task-based interaction with
result lists. The success of each ordering will be measured
subjectively (“Does the user like the result list?”) and ob-
jectively (“Does the user successfully complete the task?”).

A drawback to the two-search studies is that they can intro-
duce artificialities that bias behavior, as it difficult to moti-
vate repeat searches without over-specifying the target. To
gain a realistic understanding of how the Re:Search Engine
will be used in practice, a deployment of the system is
planned, and usage data will be collected and analyzed.

GENERALIZING THE SOLUTION

Although the Re:Search Engine focuses on maintaining
consistency between old search result lists and new, other
types of information people commonly interact with also
change. For example, online news sites change when new
stories are written, and Web sites change as their hosts edit
them. The growing ease of electronic communication and
collaboration, the rising availability of time dependent in-
formation, and even the introduction of automated agents,
suggest information is becoming ever more dynamic. As
stated by Levy, “ [P]art of the social and technical work in
the decades ahead will be to figure out how to provide the
appropriate measure of fixity in the digital domain [8].”
Understanding how people interact with search results on
the Web while re-finding will shed light on how people
return to information in dynamic environments in general,
and I look forward to applying what I learn from the
Re:Search Engine to other problems in the domain.
ACKNOWLEDGMENTS

I appreciate the support of my advisor, David Karger, and
committee, Mark Ackerman, Sue Dumais and Rob Miller.
REFERENCES
1. A9, http://www.a9.com

2. Capra, R.G. and Pérez-Quiñones, M.A. Re-Finding Found
Things: An Exploratory Study of How Users Re-Find Infor-
mation. Tehcnical Report cs.HC/0310011, Computing Re-
search Repository (CoRR), 2003.

3. Graphic, Visualization, and Usability Center. GVU’s Tenth
WWW User Survey, October 1998.

4. Dumais, S.T., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin, R. and
Robbins, D.C. Stuff I’ve Seen: A System for Personal Infor-
mation Retrieval and Re-Use. In Proceedings of SIGIR’03,
2003, 72–97.

5. Hayaski, K., Normura, T., Hazama, T., Takeoka, M., Hashi-
moto, S. and Grudmundson, S.. Temporally Threaded Work-
space: A Model for Providing Activity-Based Perspectives on
Document Spaces. In Proceedings of HyperText’98, 1998,
pp. 87–96.

6. Jones, W., Bruce, H. and Dumais, S.T. How Do People Get
Back to Information on the Web? How Can They Do It Bet-
ter? In Proceedings of INTERACT’03, 2003, pp. 793–796.

7. Kelly, D. and Teevan, J. Implicit Feedback for Inferring User
Preference: A Bibliography. SIGIR Forum, 37, 2 (Fall 2003),
18–28.

8. Levy, D. Fixed or Fluid? Document Stability and New Media.
In Proceedings of European Conference on Hypertext, 1994,
pp. 24–31.

9. Rekimoto, J. Time-Machine Computing: A Time-Centric
Approach for the Information Environment. In Proceedings
of UIST’99, 1999, pp. 45–54.

10. Teevan, J., Alvarado, C., Ackerman, M.S. and Karger, D.R.
The Perfect Search Engine is Not Enough: A Study of Orien-
teering Behavior in Directed Search. In Proceedings of
CHI’04, 2004, pp. 415–422.

11. Teevan, J. Displaying Dynamic Information. In Proceedings
of CHI’01 (Extended Abstract), 2001, pp. 417–418.

12. Teevan, J. How People Re-Find Information when the Web
Changes. MIT AI Memo AIM-2004-012.

